Charm bracelets and their application to the construction of periodic Golay pairs

نویسندگان

  • Dragomir Z. Dokovic
  • Ilias S. Kotsireas
  • Daniel Recoskie
  • Joe Sawada
چکیده

A k-ary charm bracelet is an equivalence class of length n strings with the action on the indices by the additive group of the ring of integers modulo n extended by the group of units. By applying an O(n3) amortized time algorithm to generate charm bracelet representatives with a specified content, we construct 29 new periodic Golay pairs of length 68.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negaperiodic Golay pairs and Hadamard matrices

Apart from the ordinary and the periodic Golay pairs, we define also the negaperiodic Golay pairs. (They occurred first, under a different name, in a paper of Ito.) If a Hadamard matrix is also a Toeplitz matrix, we show that it must be either cyclic or negacyclic. We investigate the construction of Hadamard (and weighing matrices) from two negacyclic blocks (2N-type). The Hadamard matrices of ...

متن کامل

Quaternary Golay sequence pairs I: even length

The origin of all 4-phase Golay sequences and Golay sequence pairs of even length at most 26 is explained. The principal techniques are the three-stage construction of Fiedler, Jedwab and Parker [FJP08] involving multi-dimensional Golay arrays, and a “sum-difference” construction that modifies a result due to Eliahou, Kervaire and Saffari [EKS91]. The existence of 4-phase seed pairs of lengths ...

متن کامل

Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions

A pair of two sequences is called the even periodic (odd periodic) complementary sequence pair if the sum of their even periodic (odd periodic) correlation function is a delta function. The wellknown Golay aperiodic complementary sequence pair (Golay pair) is a special case of even periodic (odd periodic) complementary sequence pair. In this paper, we presented several classes of even periodic ...

متن کامل

A multi-dimensional approach to the construction and enumeration of Golay complementary sequences

We argue that a Golay complementary sequence is naturally viewed as a projection of a multidimensional Golay array. We present a three-stage process for constructing and enumerating Golay array and sequence pairs: 1. construct suitable Golay array pairs from lower-dimensional Golay array pairs; 2. apply transformations to these Golay array pairs to generate a larger set of Golay array pairs; an...

متن کامل

A construction of binary Golay sequence pairs from odd-length Barker sequences

Binary Golay sequence pairs exist for lengths 2, 10 and 26 and, by Turyn’s product construction, for all lengths of the form 21026 where a, b, c are non-negative integers. Computer search has shown that all inequivalent binary Golay sequence pairs of length less than 100 can be constructed from five “seed” pairs, of length 2, 10, 10, 20 and 26. We give the first complete explanation of the orig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 188  شماره 

صفحات  -

تاریخ انتشار 2015