Charm bracelets and their application to the construction of periodic Golay pairs
نویسندگان
چکیده
A k-ary charm bracelet is an equivalence class of length n strings with the action on the indices by the additive group of the ring of integers modulo n extended by the group of units. By applying an O(n3) amortized time algorithm to generate charm bracelet representatives with a specified content, we construct 29 new periodic Golay pairs of length 68.
منابع مشابه
Negaperiodic Golay pairs and Hadamard matrices
Apart from the ordinary and the periodic Golay pairs, we define also the negaperiodic Golay pairs. (They occurred first, under a different name, in a paper of Ito.) If a Hadamard matrix is also a Toeplitz matrix, we show that it must be either cyclic or negacyclic. We investigate the construction of Hadamard (and weighing matrices) from two negacyclic blocks (2N-type). The Hadamard matrices of ...
متن کاملQuaternary Golay sequence pairs I: even length
The origin of all 4-phase Golay sequences and Golay sequence pairs of even length at most 26 is explained. The principal techniques are the three-stage construction of Fiedler, Jedwab and Parker [FJP08] involving multi-dimensional Golay arrays, and a “sum-difference” construction that modifies a result due to Eliahou, Kervaire and Saffari [EKS91]. The existence of 4-phase seed pairs of lengths ...
متن کاملEven periodic and odd periodic complementary sequence pairs from generalized Boolean functions
A pair of two sequences is called the even periodic (odd periodic) complementary sequence pair if the sum of their even periodic (odd periodic) correlation function is a delta function. The wellknown Golay aperiodic complementary sequence pair (Golay pair) is a special case of even periodic (odd periodic) complementary sequence pair. In this paper, we presented several classes of even periodic ...
متن کاملA multi-dimensional approach to the construction and enumeration of Golay complementary sequences
We argue that a Golay complementary sequence is naturally viewed as a projection of a multidimensional Golay array. We present a three-stage process for constructing and enumerating Golay array and sequence pairs: 1. construct suitable Golay array pairs from lower-dimensional Golay array pairs; 2. apply transformations to these Golay array pairs to generate a larger set of Golay array pairs; an...
متن کاملA construction of binary Golay sequence pairs from odd-length Barker sequences
Binary Golay sequence pairs exist for lengths 2, 10 and 26 and, by Turyn’s product construction, for all lengths of the form 21026 where a, b, c are non-negative integers. Computer search has shown that all inequivalent binary Golay sequence pairs of length less than 100 can be constructed from five “seed” pairs, of length 2, 10, 10, 20 and 26. We give the first complete explanation of the orig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 188 شماره
صفحات -
تاریخ انتشار 2015